Nicotinic receptors in the habenulo-interpeduncular system are necessary for nicotine withdrawal in mice.

نویسندگان

  • Ramiro Salas
  • Renea Sturm
  • Jim Boulter
  • Mariella De Biasi
چکیده

In humans, tobacco withdrawal produces symptoms that contribute to the difficulty associated with smoking cessation. Nicotine withdrawal symptoms can also be observed in rodents. A major standing question is which nicotinic receptor subtypes and which areas of the brain are necessary for nicotine withdrawal to occur. Using knock-out mice, we previously showed that the beta4, but not the beta2 subunit of nicotinic acetylcholine receptors, is necessary for the somatic manifestations of nicotine withdrawal. Since the beta4 subunit is highly expressed in the medial habenula, we focused our studies on the medial habenula and its primary target, the interpeduncular nucleus. In particular, we studied nicotine withdrawal in mice lacking the alpha2 or the alpha5 nicotinic receptor subunits, which are highly expressed in the interpeduncular nucleus. We precipitated withdrawal by systemically injecting the nicotinic antagonist mecamylamine in mice chronically treated with nicotine. Both the alpha2 and the alpha5 null mutations abolished the somatic manifestations of nicotine withdrawal. In addition, in wild-type mice chronically treated with nicotine, mecamylamine precipitated withdrawal when microinjected into the habenula or the interpeduncular nucleus, but not into the cortex, ventral tegmental area or hippocampus. Our results demonstrate a major role for the habenulo-interpeduncular system and the nicotinic receptor subunits expressed therein, in nicotine withdrawal symptoms. Our data suggest that the efforts to develop new smoking cessation therapies should concentrate on these areas and receptor types.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nicotinic acetylcholine receptors control acetylcholine and noradrenaline release in the rodent habenulo-interpeduncular complex

BACKGROUND AND PURPOSE Nicotinic acetylcholine receptors (nACh receptors) play a central role in the habenulo-interpeduncular system. We studied nicotine-induced release of NA and ACh in the habenula and interpeduncular nucleus (IPN). EXPERIMENTAL APPROACH The habenula and IPN were loaded with [(3) H]-choline or [(3) H]-NA and placed in superfusion chambers. [(3) H]-ACh release was also stimu...

متن کامل

Mesolimbic dopamine and habenulo-interpeduncular pathways in nicotine withdrawal.

The majority of people who attempt to quit smoking without some assistance relapse within the first couple of weeks, indicating the increased vulnerability during the early withdrawal period. The habenula, which projects via the fasciculus retroflexus to the interpeduncular nucleus, plays an important role in the withdrawal syndrome. Particularly the α2, α5, and β4 subunits of the nicotinic ace...

متن کامل

Activation of GABAergic Neurons in the Interpeduncular Nucleus Triggers Physical Nicotine Withdrawal Symptoms

BACKGROUND Chronic exposure to nicotine elicits physical dependence in smokers, yet the mechanism and neuroanatomical bases for withdrawal symptoms are unclear. As in humans, rodents undergo physical withdrawal symptoms after cessation from chronic nicotine characterized by increased scratching, head nods, and body shakes. RESULTS Here we show that induction of physical nicotine withdrawal sy...

متن کامل

Subunit composition of α5-containing nicotinic receptors in the rodent habenula

Gene association studies in humans have linked the α5 subunit gene CHRNA5 to an increased risk for nicotine dependence. In the CNS, nicotinic acetylcholine receptors (nAChRs) that contain the α5 subunit are expressed at relatively high levels in the habenulo-interpeduncular system. Recent experimental evidence furthermore suggests that α5-containing receptors in the habenula play a key role in ...

متن کامل

Recent advances in understanding nicotinic receptor signaling mechanisms that regulate drug self-administration behavior.

Tobacco smoking is one of the leading causes of disease and premature death in the United States. Nicotine is considered the major reinforcing component in tobacco smoke responsible for tobacco addiction. Nicotine acts in the brain through the neuronal nicotinic acetylcholine receptors (nAChRs). The predominant nAChR subtypes in mammalian brain are those containing α4 and β2 subunits. The α4β2 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 29 10  شماره 

صفحات  -

تاریخ انتشار 2009